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PREFACE

This report documents a study to examine the feasibility of using neural network
technology for the development of troubleshooting procedures for on-board aircraft
avionics systems. The research was conducted under Project 1710, Task D2, by the
Logistics Research Division of the Armstrong Laboratory. Mr Shing Pak Chu was the
principal investigator. Technical support was provided by the University of Dayton
Research Institute and NCI, Inc.




SUMMARY

In recent years, several techniques have been developed to create "intelligent"
diagnostic aiding systems. Most of these systems, including the current Integrated
Maintenance Information System (IMIS) diagnostics module, involve modeling the
systems to be maintained. These systems have the disadvantage of requiring extensive
efforts to develop them. A developing technology, “neural networks,” provides a
promising alternative. Neural nets develop diagnostics strategies by learning from past
experience with the system, and do not require extensive modeling. Neural networks are
well suited to diagnostics applications. '

A Radial Basis Function Network (RBFN) was built using Matlab Neural
Networks Toolbox. A diagnostic system was modeled from the F-16 Fire Control Radar
(FCR) data. The neural network was trained using FCR maintenance records obtained
from the F-15 System Program Office. Evaluation of the neural nets indicated that,
although the neural nets were able to successfully isolate faults in the testbed system, the
demonstrated accuracy for fault diagnosis did meet the objectives of the test.
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I. INTRODUCTION

The traditional diagnostic methods for aircraft maintenance using technical
manuals are costly to author and often fail to isolate the cause of the system failure; thus,
these traditional methods impact mission readiness and increase maintenance costs. High
field maintenance hours and false removals are often caused by incorrect diagnosis. The
accuracy of fault diagnosis could be improved by the use of maintenance historical data.
However, this data is difficult to access and is seldom used. A diagnostic system is
needed that is capable of learning from historical data and using this information to help
in identifying the faulty unit and correctly predicting the cause of false removals, such as
Line Replaceable Units (LRU) that Bench Check Serviceable (BCS) when tested in the
shop depot. Artificial neural networks provide a possible solution to this fault diagnosis
problem. This paper describes the development of a diagnostic system using an artificial
neural network combined with a Bayesian maximum likelihood classifier to provide the
required diagnostic capability without requiring the services of costly maintenance
experts. The background describes the problem and briefly introduces the artificial neural
network approach. For readers without a lot of knowledge of artificial neural networks, a
list of references is provided. Section III contains a description of the diagnostic system
and its operation. Section IV concerns one of the components, the radial basis function
network (RBFN), including its architecture and mathematical relevancy. The other main
component, the maximum likelihood classifier, is featured in Section V. Section VI
contains a description of the data representation scheme. The "Implementation" section,
Section VII, includes a description of system inputs, outputs, and training and testing
methods, while Section VIII concerns system optimization. Finally, system performance
was calculated in terms of accuracy and execution time in Section IX.

II. BACKGROUND

BCS occurs when the reported faulty component checks good when tested in the
back shop. BCS occurs at the maintenance shop level and is always the result of
unnecessary removal of LRU. Early knowledge that an LRU has a history of frequent
BCSs and is likely to BCS can help the maintenance technician to modify his diagnostic
procedures, thus reducing unnecessary removal of LRU's. A well-trained technician can
tell from the maintenance history of the LRU whether it is likely to BCS, thus providing
this project with a set of sample data. This report presents a process for developing a
practical fault classifier that uses neural network technology and historical data to identify
faults in today’s military aircraft systems. The F-16 FCR data was used as the testbed for
this study.

The term “artificial neural networks” refers to any computing architecture that
consists of massively parallel, interconnected, simple “neural” processors. It was
postulated that a model with a structure similar to a biological neural network could have
similar intelligence functions. By carefully emulating the brain, artificial neural networks
have exhibited such brain-like characteristics as the ability to learn from experiences,




generalize on knowledge, and perform information extraction. Neural networks can be
used as computational models based on linear system theories and design methodologies.

III. DIAGNOSTIC SYSTEM

The diagnostic system is designed to identify the faulty component and the type
(normal, lemon, or bad actor) of fault that is occurring. The structure of the diagnostic
system is depicted in Figure 1. Maintenance Fault Lists (MFL) are entered into a neural
network that has been trained to recognize the difference between symptom patterns and
identify the faulty LRU. Once the LRU is identified, the same symptom is entered into a
lower level Bayesian classifier to classify the identified LRU as a “normal,” “lemon,” or
“bad actor.” Three additional pieces of information are required. The posterior matrices
are generated from the product of “a prior” and conditional probability matrices. From
Baye’s rule, we form the classifier on the basis of “opportunity loss” x “posterior,” and a
“payoff” matrix is formed. The payoff matrix contains a decision that takes into account
the likelihood of occurrence and the opportunity loss or misclassification associated with
a particular set of symptoms or MFL codes. We interpret the payoff using the identified
LRU; as an indicator, and Baye's rule declares the category winner (i.e., normal, lemon,
or bad actor) that has the highest payoff.

MFL's
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Figure 1. Diagnostic System Structure




IV. NEURAL NETWORK ARCHITECTURE

A standard radial basis function (RBF) network is used to perform the pattern
classification task. The goal is to identify the offending LRU. Cover's theorem on the
separability of patterns states that a complex classification problem cast in high-
dimensional space nonlinearly is more likely to be linearly separable than in a low-
dimensional space (Cover, 1965). Taking Cover's stance that learning is a matter of
reconstructing the hypersurface in a multidimensional space given available training data,
generalization is the use of this surface to interpolate the test data. Given that input data
is high-dimensional and with unknown correlation, the use of an RBF network is
justified.

Consider the Gaussian function,

ki

G(”x—tl”):e 2° ’ i=1:2)--'k
where x is input and t, is the i measurement centered at the data point.
Assume the desired outputs of the described problem have a nonzero mean. The standard

deviation, o, is used to fine tune the width of the Gaussian curves; therefore, the input-
output relation of the RBFN is defined by: (Haykin, 94)

$x) = S WGl -1+
where w is the \;;ight matrix.
To have a perfect fit of the training data,
y(x;)=d;, j=12..p
where x; is an input vector and d;is the deéired output.

For convenience, the equations are put in matrix form:

g, =G(x;-t], Jj=12..pi=12..k
Therefore,

Gw=d
where
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All parameters of this network are known except the weight matrix w, and there are more
training samples than inputs, that is, G is not squared, £ > p. We can solve w by solving
an overdetermined linear system of the form, ‘

w=G'd,
where G* denotes the pseudoinverse of G.
By casting an orthogonal projection of d to a hyperplane that is colinear in the direction of
w, we form Gw. Any w that minimizes the residue, r = d - Gw, is a least squares solution
to this overdetermined system. The desired equation is d - Gw = 0, or Gw = d. Multiply
both sides by G”, and G'Gw = G"d, and finally w can be expressed as

w=(G'G)'G"d.

This form is computationally efficient because matrix G'Gis symmetric possible definite
(SPD). '

y(x)

Figure 2. Radial Basis Function Network

The RBF network in Figure 2 has two layers: a hidden layer and an output layer. The
hidden layer calculates the Euclidean norm, |lxj - ;. This layer calculates the distance




between input vector to each sample data vector. Each neuron will output a value
according to how close the input vector is to each neuron’s sample data vector. The
results are passed to an RBF, in this case, an exponential function. This forms the outputs
of the hidden neurons. The output layer contains a weight matrix, w and b, the bias. The
weights, w, can be solved by w = G"d as described above. Note that b is inserted as part
of w, (i.e., w = [w; w,... w; b]).

V. MAXIMUM LIKELTHOOD BAYESIAN CLASSIFIER

A maximum likelihood classifier is constructed to classify the offending LRU to
be either a “normal,” “lemon,” or “bad actor.” “Normal” simply means the LRUs only
require normal maintenance procedures (e.g., repair, removal and replacement, and so
forth). A “lemon” defines the LRU as having multiple incidents of BCSs occurring in
different aircraft. A “bad actor” also signifies multiple BCSs, but only occurring
erratically in some aircraft. A full description is included in a report of the Bad Actor
Program from the Air Force F-15 System Program Office (DRC, 94). To build the
classifier, we need “a prior,” “conditional probability,” and “opportunity loss” matrices
(McClave, 85). Their relationships are as follows.

Assuming there are m LRUs, n categories and ¢ MFLs, the following definitions apply.

P, - A priori, probability of LRU; in category;, this matrix is sized m x n.

i
P, - Probability of MFL, conditioned on LRU; belongs to category;, this matrix
issizedmxnxgq.

P,;ix - Posterior, probability of LRU; in category; conditioned on MFL,, this
matrix is sized mx nx q. ’

From Baye’s rule, for each MFL,,
Ppij = Ppy Pej.

For each misclassification, there is always some associated cost penalizing the mistake.
The cost can be in terms of dollar amounts, time wasted, or a combination of these
factors:

Iy =aCy + BTy

where /;, Cj;, and T}; are the opportunity loss, cost, and time resulting from
misclassification of LRU; in fault category;; respectively, and o and p are weighting
parameters to balance the cost and time criteria. In one extreme case where the
maintenance time is the dominant criterion (usually in war time), o = 0. In the other

extreme case where the maintenance cost is the dominant criterion (usually in peace




time), B = 0. The cost coefficients form an m x » cost coefficient matrix. Likewise, the
time coefficients form an m x n time coefficient matrix. The sum of the two form the
opportunity loss matrix. The opportunity loss matrix is also conditioned on MFL, and
will be discussed in the data section. Finally, the “payoff” matrix is defined as

Prayosy = Ppij L

Since both the posterior and opportunity loss matrices are conditioned on MFL,, MFLy is
used as an indicator to summon P,,,,on demand.

Interpretation of P, is straightforward. P,y contains the posterior
probabilities scaled by the opportunity losses. Baye’s rule dictates that the largest
posterior shall win; therefore, the identified LRU; is used as an indicator to locate a row
in the payoff matrix and find the highest value in that row. The column will suggest the

winning category.
VI. DATA REPRESENTATION

Data was acquired through Tactical Interim Core Automated Maintenance System
(CAMS) And Reliability and Maintainability Information System (REMIS) Reporting
System (TICARRS) of the F-15 SPO. This data was obtained for the F-16 C/D block 40
FCR from the period of August 1993 to August 1994 covering these bases: Kirkland,
Eielson, Hill, Luke, Moody, and Shaw. Three sets of data were collected and analyzed.
The first set was collected by querying all records with a string containing “MFL” and
fault reporting code (FRC). This set contains 466 records, including Work Unit Code,
Job Control Number, Year, Day, Action Taken, Howmal Code, Discrepancy, and
Corrective Action (see Fig. 3.). This set of data was used to train the RBFN to identify
the offending LRU. Once the RBFN was trained, the data was discarded.
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Figure 3. An Example of TICARRS Data

Only MFLs in the discrepancies and the repaired LRUs were used for the
classification. We gave a binary coding (Apolloni, 1990) to the set of all possible inputs
(MFLs) and all possible outputs (LRUs), (see Figure 4). Records judged not relevant for
fire control radar were excluded and duplications of records were eliminated. There are
137 inputs and 7 outputs (see Listing 1.). Each possible MFL represents an index



position in the input vector and each possible LRU represents an index position in the
output vector. The output is coded “one-of-N,” which means that only one LRU is
trained at a time.

Data Elements : MFL and LRU

MFL 093 093 112 021 028
2 || \
=TT \

I R AN

ANT MLPRF DMT

aa S

E‘f’fﬁ /‘/‘/

Figure 4. Input and Output Representations

When attempting to solve the BCS problem, we found that the first set of data was
inadequate because BCS always implies multiple LRU removals and the first set of data
did not contain information on LRUs installed or removed. We collected a second set of
data which contained the required information for the period March 1995 to August 1995.
Only 56 records were collected because TICARRS maintains records of LRU part
numbers for only six months. The same types of information were collected, except we
added information concerning aircraft tail numbers and part numbers of LRU installed or
removed. Based on experience, a maintenance expert analyzed this data and assigned
either a “normal,” “bad actor,” or “lemon” category to each LRU encountered.

A third set of data was collected to construct the “opportunity loss matrix”,
resulting from misclassification of LRU; in fault category;. The opportunity loss can be
time, cost, or subjectively determined. The actual cost of the misclassifications was used
in this matrix. '




VII. IMPLEMENTATION

The RBFN was implemented using MATLAB neural networks toolbox on a 100
MHz pentium PC. The input layer has 137 neurons, the hidden layer has 465 neurons
(see the optimization section below), and the output layer has 7 neurons. The first set of
data was reformatted in a text file, “mldata.txt,” from which the training input, P, and the
desired output, T, matrices were extracted. We trained the network by presenting the
matrix P and desired output matrix T to the network. Setting the ‘weights’ of each hidden
neuron to each sample input, the network calculates the Euclidean norm, |x -], and
then g; is calculated. The desired output, d,w= (GTG)'IGTd was computed and the
RBFN was trained. By presenting a binary vector with 137 elements to the input, the
network will estimate a vector of size 1 x 7 by computing a new Gw. This output is the
sum of probability density functions (PDF), and can be used for ranking purposes. w is
precomputed during training.

The “a prior” matrix and “conditional probability” matrices were extracted from
the second set of data. P,; was formed by counting the frequency of occurrence of LRU;
belonging to category;. A 7 x 3 matrix was formed and normalized by dividing each row
by its highest value. P, was formed by counting the frequency of occurrence of MFLy
when LRU; belongs to category;. A 7 x 3 x 137, normalized, three dimensional (3-D)
array was used to store P_. P, was handled slightly different than above, although P,;;
is also conditioned on MFL,. Given an MFLy, P,;; can be calculated from P,; P,; on
demand; therefore, a 3-D array storage is unnecessary. P is sized 7x 3. An alternative
is to obtain P, directly from the data file, (see Listing 2). The ‘opportunity loss’
matrices were formed using a 3-D array. P, Py, and [y form Py for any given
MFL,. As multiple MFLs occurred, all P,,,,;/s were added. Finally/, P ayof is normalized

bY Ppayopr! MaxX(Ppayop)-

VIII. SYSTEM OPTIMIZATION

Recall that the standard deviation, o, is used to optimize the RBFN by adjusting
the width of the Gaussian curves. A technique developed by the Ford Motor Company
called “leave-1-out” (Marko, 1990) was used to estimate the optimized . It is presumed
that the training data is representative of the data that span the multi-dimensional space
sufficiently so that the classifier can generalize usefully. In this context, generalization
means that the output produced by RBFN was not among those that it was trained from
The “leave-1-out” method is described as follows:

The entire set of data samples except one was used to train the RBFN using a o.
After the network was trained, the network was tested by using it to identify the fault for
the data sample not used for training. The output was recorded. This process was
repeated 466 times, and a different sample was held out each time. The percentage of the
total correct solution was recorded. The process was completed for one . To optimize



the system, a range of ¢‘s were used. The optimal o was found to be 0.8326/sc, where sc _
= 1.5 (see Figure 5 and Listing 3). )

Sigma optimization
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Figure 5. System Performance Optimization by Varying Sigma

IX. SYSTEM PERFORMANCE

While using the “leave-1-out” method of optimization, the accuracy of the RBFN
can be measured simultaneously. With the optimal o, the RBFN produced 372 correct
answers, which included guessing the top ranked LRU that was actually bad with an 80%
accuracy rate. The RBFN ranked the faulty LRU first or second with an accuracy of
86.48%, or 403 correct answers. The total training time for one ¢ is 6.5634 x 10*
seconds, or 18.23 hours. For a single input vector, the network execution time is 0.55
seconds. As for the BCS classifications, because of the little amount of data gathered, a
stochastic approach was not feasible. A statistical approach was used. P,;, P and [y
function as lookup tables to generate P, dynamically. Since all operations of the
matrices are done element-by-element, the computations are very efficient.

/




X. CONCLUDING REMARKS

A deterministic Bayesian classifier supplemented by a RBFN was developed for
aircraft fault classification (normal, lemon, or bad actor) for concluding if an LRU is
indeed-defective. The RBFN is a parallel computational model designed to identify the
defective LRU. It was disappointing that the RBFN only provided an 80% accuracy rate.
It is hoped that the RBFN can operate at an aecuracy rate beyond 90% to be practical.
Theoretically, as more data accumulates, the system accuracy will improve. As the
network grows in size, network execution speed will suffer. A version of RBFN with a
clustered hidden layer can be developed to counter the size problem. Another setback is
the extensive data analysis time. Future research must include the automatic generation
of training data from raw data. Nevertheless, the neural net approach minimizes the
system modeling effort and eliminates writing expert rules. The Bayesian classifier
~ offers a solution to the BCS problems based on statistical measures.
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List Of Abbreviations

AL/HRG A Armstrong Laboratory/ Logistics Research Division
BCS Bench Check Serviceable

CAMS - Core Automated Maintenance System

DRC Dynamics Research Corporation

FCR Fire Control Radar

FRC Fault Reporting Code

IMIS Integrated Maintenance Information System

LRU Line Replaceable Unit

MFL Maintenance Fault List

PDF Probability Density Function

RBF Radial Basis Function

RBFN Radial Basis Function Network

REMIS Reliability and Maintainability Information System
SC Spread Constant

SPD Symmetric Possible Definite

SPO System Program Office

TICARRS Tactical Interim CAMS And REMIS Reporting System
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APPENDIX A
LISTINGS

LISTING 1: Inputs and Outputs

MFL 001 MFL 059 MFL 117 MFL 245
MFL 002 MFL 060 MFL 119 MFL 246
MFL 003 MFL 061 MFL 120 MFL 248
MFL 004 MFL 062 MFL 122 MFL 249
MFL 005 MFL 064 MFL 124 MFL 252
MFL 006 MFL 065 MFL 125 MFL 253
MFL 007 MFL 068 MFL 126 MFL 255
MFL 008 MFL 069 MFL 127 MFL 269
MFL 009 MFL 070 MFL 128 MFL 270
MFL 010 MFL 071 MFL 184 MFL 271
MFL 020 MFL 074 MFL 200 MFL 272
MFL 021 MFL 084 MFL 203 MFL 273
MFL 022 MFL 085 MFL 205 MFL 274
MFL 024 MFL 087 MFL 209 MFL 276
MFL 026 MFL 088 MFL 212 MFL 280
MFL 028 MFL 089 MFL 213 MFL 284
MFL 029 MFL 090 MFL 215 MFL 285
MFL 035 MFL 091 MFL 216 MFL 286
MFL 036 MFL 092 MFL 218 MFL 288
MFL 037 MFL 093 MFL 219 MFL 290
MFL 038 MFL 094 MFL 220 MFL 293
MFL 039 MFL 095 MFL 222 MFL 294
MFL 041 MFL 096 MFL 223 MFL 295
MFL 042 MFL 097 MFL 224 MFL 298
MFL 043 MFL 098 MFL 226 MFL 302
MFL 044 MFL 101 MFL 231 MFL 308
MFL 046 MFL 102 MFL 235 MFL 310
MFL 052 MFL 103 MFL 236 MFL 316
MFL 053 MFL 104 MFL 237 MFL 318
MFL 054 MFL 107 MFL 238 MFL 324
MFL 055 MFL 108 MFL 240 MFL 327
MFL 056 MFL 112 MFL 242 MFL 331
MFL 057 MFL 114 MFL 243 MFL 335
MFL 058 MFL 116 MFL 244 MFL 338
MFL 341
LRU 1 ANTENNA
LRU 2 MODULAR LOW POWER RADIO FREQ UNIT
LRU 3 DUAL MOD. TRANSMITTER
LRU 4 PROGRAMMABLE SIGNAL PROCESSOR
LRU 5 WAVEGUIDE ASSY.
LRU 6 ABS. PRESS RELIEF VALUE
LRU 7 WIRING

13




LISTING 2: Program to Generate Posterior Directly From Data

This illustrates how to generate posterior for all MFL's
k=1..137 from a text file.

vVariable s stores the posterior for the kth MFL index.
Variable ns stores the normalized posterlor*for the kth MFL.
The variable acc accumulates all posterior's.

To use this routine, first adjusts values of m, 1, a and s
to the data file size, then take out the k-loop,

and substitute k for the MFL index. At last, take out the
accumulator and the diary.

Creator: Shing P.Chu, The Air Force Armstrong Labortory
Date: Aug 24, 95

P P OF dP P AP O° O dF of of

load 'mldata.dat’

m = mldata(:,1:137);

1 = mldata(:,138:144);
a = mldata(:,145);

s = zeros(7,3);

acec = 8;

for k = 1:137
for i = 1:7
r =m(:,k) + 1(:,1);
rr=find(r==2};
r = zeros(size(r));
r(rr) = ones(size(rr));
p=rx;
az = p .* a;
rrr = r + az;
s8(i,1) = length(find(rrr==2));
s(i,2) length(find (rrr==3)};
s(i,3) = length(find(rrr==4));
if sum(s(i,:)) ==
ns(i,:) = zeros(size(s(i,:)));
else ns(i,:) = s(i,:)/sum(s{i,:)};
end;
end;
acc = acc + 8;
diary on;
k
[s ns]
diary off;
end;
diary on;
acc

diary off,
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LISTING 3: Program to Measure Performance Of The RBFN

This program implements the hold-1-out method of training and evaluation
of the exact form of RBFN. There are 137 inputs, 465 hidden neurons and
7 outputs. There are a total of 466 records for both training and
testing.

Creator: Shing P.Chu, The Air Force Armstrong Labortory
Date: Aug 30, 95

DEFINING VECTORS TO BE CLASSIFIED
oad 'mldata.txt';
= randperm(466)"'; % randomly scrambles the data records, may
% be unnecessary for RBFN.
data = mldata(r(:),:); % rdata becomes the new data set.
for sigma = 1.2:0.3:1.8

sigma = 1.5; % sigma optimal at 1.5.
mmldata = rdata'; % use mmldata from now on.
t0 = clock; % start the time count.
corr = 0;

for i = 1 : 466 %

learn = mmldata(:, 2:466); % :

test = mmldata(1:137, 1); % hold-1-out
desire = mmldata(138:144, 1); %

mmldata = [learn mmldata(:,1)]; %

P = learn(1:137, :); % training inputs

% Here are the classes these vectors fall into.

T = learn{138:144, :); % target outputs

% INITIALIZE NETWORK ARCHITECTURE
Y===mcmz=zs============s==========

% sc = [10 100 0.02 1];

% [wl,bl,w2,b2,nr,tr] = solverb(P,T);

wl,bl,w2,b2] = solverbe(P,T,sigma);
Here we present the input vector
= simurb(test,wl,bl,w2,b2);

iary
igma

o0

begin evaluate the hold-1-out

e

= full(a);
rr=find(a==max(a));
a = zeros(size(a));
a({rr) = ones(size(rr));
f a == desire
corr = corr + 1;
nd;
orr
a desire]
nd;
time (clock, t0) % record the time used

a0 a0 of of

accmulates the correct answers

o0 o

o° o o

diary off

%

end;
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